
OCaml Tutorial

OCaml Tutorial

Abram Hindle

Kitchener Waterloo Perl Monger

http://kw.pm.org

abez@abez.ca

October 19, 2006

Abram Hindle 1

OCaml Tutorial

OCaml
• Functional Language

• Multiple paradigms: Imperative, Functional, Object Oriented

• Heavy Generic support

• Interpreted or Byte code compiled or native

• Free as in Freedom (LGPL)

• Type Inferenced

• Cross Platform

Abram Hindle 2

OCaml Tutorial

Why use OCaml?
• Fast, according the programming language shootouts OCaml is often better

speed than even C++

• Statically Typed. Everything except marshalling is type safe. You can’t break

type safety without obvious hacks.

• Numerical Computation

• Performance oriented applications: statistics, mathematics, audio, multimedia

• Reasonable external library support

• Easy to integrate with existing C and C++ libraries.

• Threads (native or interpreted)

Abram Hindle 3

OCaml Tutorial

OCaml Lists
• (* construct a list *)

let l = 1 :: [] in

let l = [1 ; 2; 3] in

let l = [1] @ [2 ; 3] in

let l = 1 :: 2 :: 3 :: [] in

let fst::rest = l in

let fst::snd::third::rest = l in

Abram Hindle 4

OCaml Tutorial

OCaml List Operations
• let third = List.nth 2 [1 ;2 ;3] in

let squares = List.map (fun x -> x * x) [1 ; 2 ; 3] in

let sum = List.fold_left (+) 0 [1 ; 2 ; 3] in

let product = List.fold_left (*) 1 [1 ; 2 ; 3] in

let gt4 = List.map (fun x -> (x, x > 4)) [1 ; 2 ; 3 ; 4

let gt4 = List.filter (fun x -> x > 4) [2 ; 4 ; 6; 8] in

let tf = List.exists (fun x -> 10 = x) [1 ; 2 ; 10] in

Abram Hindle 5

OCaml Tutorial

OCaml Array Operations
• let third = Array.nth 2 [| 1 ;2 ;3 |] in

let squares = Array.map (fun x -> x * x) [| 1 ; 2 ; 3 |] in

let sum = Array.fold_left (+) 0 [| 1 ; 2 ; 3 |] in

let product = Array.fold_left (*) 1 [| 1 ; 2 ; 3 |] in

let gt4 = Array.map (fun x -> (x, x > 4)) [| 1 ; 2 ; 3 ;

let gt4 = Array.filter (fun x -> x > 4) [| 2 ; 4 ; 6; 8 |]

let tf = Array.exists (fun x -> 10 = x) [| 1 ; 2 ; 10 |] in

Abram Hindle 6

OCaml Tutorial

OCaml Functions
• let f x = x in

let f (a,b) = (b,a) in

let f = (* closure *)

let x = 9 in

(fun y -> y * x)

in

let rec f n =

if (n > 0) then f (n - 1) else n

in

Abram Hindle 7

OCaml Tutorial

OCaml Functions
• (* lets use pattern matching *)

let rec f = function

0 -> 0

| n -> f (n - 1)

in

Abram Hindle 8

OCaml Tutorial

OCaml Conditionals
• let res = if (cond) then value1 else value2 in

let res = match x where

x::xs -> Some (x::xs) (* pattern matching *)

| [] -> None

in

let not_none = match x where

None -> false

| _ -> true

in

Abram Hindle 9

OCaml Tutorial

OCaml Types
• let a = (x,y) ;; (* tuples can be of mixed types *)

type color = { r : int ; g : int ; b : int };;

let b = { r = 1.0 ; g = 0.5; b = 0.5 } ;; (* structs *)

type cheese = Cheese of string;;

let c = Cheese(‘‘Havarti’’);;

type coord = ((a:int) * (b:int));;

Abram Hindle 10

OCaml Tutorial

OCaml types and class SML Style
• type pizza = Crust of pizza | Pepperoni | Olives

| Cheese of pizza list ;;

let pizza = Crust(Cheese(

[Pepperoni ; Olives ; Crust(Pepperoni)]

));;

let rec just_crust_and_cheese =

function

Crust(x) -> just_crust_and_cheese x

| Cheese([]) -> true

| Cheese(x) -> List.for_all just_crust_and_cheese x

| _ -> false

;;

just_crust_and_cheese (Crust(Cheese([])));;

just_crust_and_cheese pizza;;

Abram Hindle 11

OCaml Tutorial

OCaml line endings
• in means assign the value of the express to this symbol in this scope. Much

like mathemtical notation

• ; semi-colon is similar to the perl comma operator. It means ignore the return

value of this expression (usually used with Unit expression)

• ;; Used to terminated global scope, this is if you want to make globals or

globally accessible functions

• Couldn’t find a good slide for it just means match anything or ignore the

value. Many programs are run by let = expr1 ; expr2 ;

expr2 ;;

Abram Hindle 12

OCaml Tutorial

OCaml values are not mutable
• Most values are not mutable (arrays and strings are mutable)

• Even struct entries are not mutable. if you change them you are copying them.

– type foo = { num : int; mutable name: string }

• Arrays have mutable values

• References are possible:

– let i = ref 0

• To change a struct or a reference:

– (* deref i and add 1 to it and assign it *)

i := !i + 1; array.(!i) <- !i; (* array assn *)

(* assign a value to an entry in a struct *)

f.name <- ‘‘lolcakes’’;

Abram Hindle 13

OCaml Tutorial

Helpful OCaml modules
• The default modules handle things like Unix syscalls to do networking and some

synchronization primitives. Even wimpy regexes.

• PCRE helps OCaml alot, the interface is very clear.

• Camlimages - image library

• SDL - for generaly multimedia

• Lablgtk - GTK bindings

• ocaml-gsl - Gnu Scientific Library

Abram Hindle 14

OCaml Tutorial

OCaml Sucks
• The comment and integer multiply cause little syntax bugs

• Can’t declare operator classes like haskell. Basically no operator overloading.

Floats and ints don’t share same operator but everything shares ¿, = ,¡ and

compare

• Can’t generalize classes easily (use :¿ operator)

• Not a lot of libraries. Not a lot of tools.

• Arrays limited to 4mb of entries. Strings are limited to 4mb in size.

• When to use ;, in, or ;; is often confusing.

• Name Spaces can clash

Abram Hindle 15

OCaml Tutorial

OCaml Sucks pt2
• No default easy way to write binary ints or floats out to file handles or strings.

• Some of the API is really lacking and often you need external libs to make up for

it.

• Many libs are old or out of date.

• Documentation regarding the C interface is lacking (no description of how to

iterate through a linked list)

• Printf is a hack. You have to declare types properly as a format not a string to

pass a template into Printf.

• Negative floating point numbers should be put in parentheses.

Abram Hindle 16

OCaml Tutorial

OCaml debugging tips
• If you can interpret or compile to byte code you can use ocaml’s interpretter to

help debug

• Add more types. If you’re not sure how an integer is being used stop using

integers, make a type like NumWaiters of int to help check the types.

• If things get really painful syntactically you can always use Camlp4 but that

probably won’t help you debug.

• Learn how OCaml describes types, most compilation issues deal with not

converting types or the compiler thinks you are using it wrong.

• When debuging start putting type hints everywhere like:

let fabs (x:float) = if x >= 0. then x else (-1.0) *. x in

Abram Hindle 17

OCaml Tutorial

OCaml summary
• Flexible language which allows for a variety programming styles

• Statically Typed

• Fast

• Sometimes cryptic and annoying

• Using OCaml’s type system is like programming while writing millions of assert

statements which only get run at a compile time.

• I use OCaml for performance and I use perl for text processing and web

automation and general scripts.

• I didn’t cover classes, modules or functors

Abram Hindle 18

